

Exterior screws, conical head

Available in carbon steel with organic coating and in A4 stainless steel

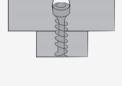
UNDERHEAD COUNTER-THREAD

Inverse underhead thread (left-handed) for excellent grip

TRIANGULAR THREAD

Front triangular thread for excellent grip and wood penetration

CONICAL HEAD


Small conical head to ensure it is hidden in the wood

COLOURS AND MATERIALS

Available in carbon steel with special coating and in A4 stainless steel

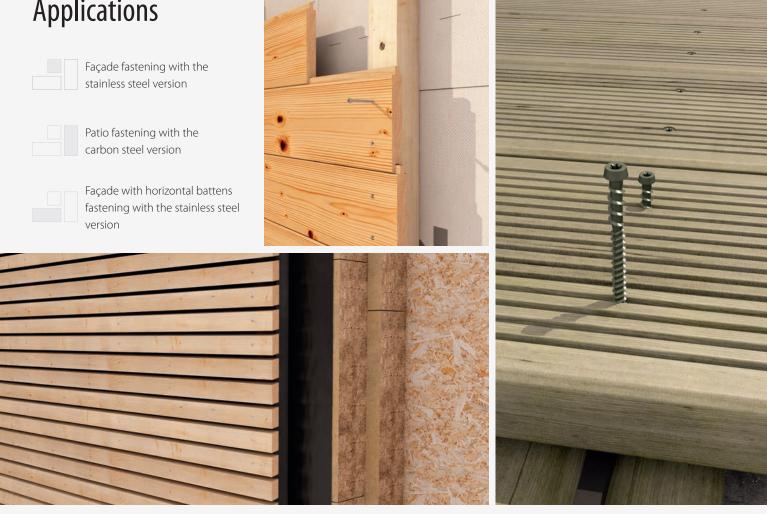
FIELDS OF USE

Exterior use; appropriate for service classes 1-2-3

INVISIBLE HEAD

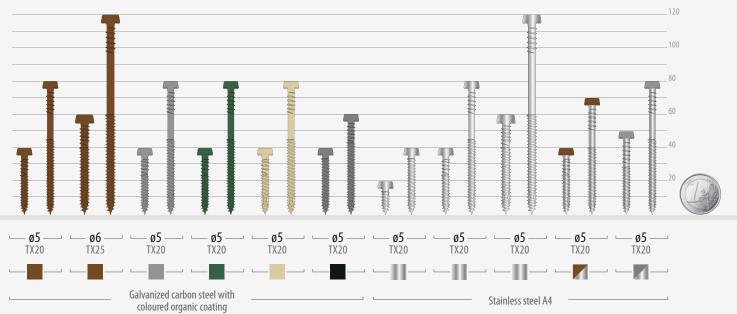
Aesthetically pleasing and longlasting fastening, thanks to the extremely small conical head that becomes ever less visible in the wood as time goes on

TIGHTENING FORCE


The inverse underhead thread generates excellent grip capacity for the screw, which allows for perfect closure of the joint as well as stable fastening. The doublenotched tip increases this effect.

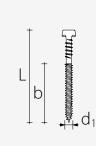
AGGRESSIVE ENVIRONMENTS

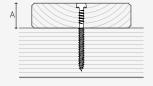
A4 stainless steel screws guarantee excellent resistance to corrosion even in very aggressive environments. The A4 version with a coloured head is ideal for invisible fastening.



Applications

Range


The carbon steel version with organic coating is available in five different colours and includes a self-perforating tip with a double notch that increases the capacity to cut the fibres during tightening. The A4 stainless steel version includes a self-perforating tip with a single notch and is also available with a brown or grey coloured head. The total thread version is recommended for fastenings coupled with connectors for patios and façades. For all versions, the bit is included in each box.



Codes and dimensions

KKT GALVANIZED COLOURED CARBON STEEL

d ₁ [mm]	code	L [mm]	colour	material	b [mm]	A [mm]	pcs/pckg
	KKTM540	40		T	24	16	
-	KKTM545	45		T	27	18	
5	KKTM550	50		T	30	20	200
ТХ20	KKTM555	55		T	33	22	200
	KKTM560	60		T	35	25	
	KKTM565	65		T	37	28	
	KKTM570	70		T	40	30	100
	KKTM580	80		T	45	35	100
	KKTM660	60		T	42	18	
6	KKTM680	80		T	50	30	100
TX25	KKTM6100	100		T	50	50	100
_	KKTM6120	120		T	60	60	
	KKTG540	40		T	24	16	
~	KKTG545	45		T	27	18	
5	KKTG550	50		T	30	20	200
ТХ20	KKTG555	55		T	33	22	200
	KKTG560	60		T	35	25	
	KKTG565	65		T	37	28	
	KKTG570	70		T	40	30	100
	KKTG580	80		T	45	35	100
	KKTV540	40		T	24	16	
5	KKTV550	50	_	T	30	20	200
	KKTV560	60		Т	35	25	
ТХ20	KKTV570	70		T	40	30	100
	KKTV580	80		T	45	35	100
	KKTS540	40		T	24	16	
~	KKTS550	50	_	T	30	20	200
5 TX20	KKTS560	60		T	35	25	
	KKTS570	70		T	40	30	100
	KKTS580	80		T	45	35	100
5	KKTN540*	40		T	36	4	
	KKTN550	50		T	30	20	200
TX20	KKTN560	60		T	35	25	

KKT STAINLESS STEEL A4

* Screw with total thread (KKTX type)

d ₁ [mm]	code	L [mm]	colour	material	b [mm]	A [mm]	pcs/pckg
	KKTX520A4*	20		S	16	4	100
5	KKTX525A4*	25		S	21	4	250
TX20	KKTX530A4*	30		S	26	4	100
	KKTX540A4*	40		S	36	4	100
	KKT540A4	40		S	24	16	
-	KKT545A4	45		S	27	18	
5	KKT550A4	50		S	30	20	200
TX20	KKT555A4	55		S	33	22	
	KKT560A4	60		S	35	25	
	KKT565A4	65		S	37	28	
	KKT570A4	70		S	40	30	100
	KKT580A4	80		S	45	35	100
	KKT660A4	60		S	42	18	
6	KKT680A4	80		S	50	30	100
TX25	KKT6100A4	100		S	50	50	100
	KKT6120A4	120		S	60	60	

* Screw with total thread (KKTX type)

KKT STAINLESS STEEL A4 WITH COLOURED HEAD

d ₁ [mm]	code	L [mm]	colour	material	b [mm]	A [mm]	pcs/pckg
	KKT540A4M	40		S	24	16	
5	KKT550A4M	50		S	30	20	200
ТХ20	KKT560A4M	60		S	35	25	
	KKT570A4M	70		S	40	30	100
	KKT550A4G	50		S	30	20	200
5	KKT560A4G	60		S	35	25	200
ТХ20	KKT570A4G	70		S	40	30	100
	KKT580A4G	80		S	45	35	100

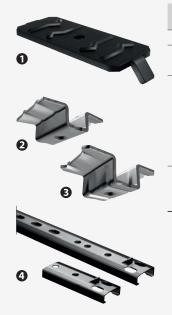
T = Galvanized carbon steel with coloured organic coating S = Stainless steel A4

The 5x45, 5x55 and 5x65 measures are available while stock lasts

Applications

Fastening, FLAT connector with KKTN screws

Fastening, TVM connectors with KKTX screws



Fastening, TERRALOCK and VERTILOCK connectors with KKTX, KKT A4 and KKTN screws

Hidden connectors for patios and façades

connector	code	LxBxH [mm]	description	pcs /pckg.
1 FLAT	FLT6427N	64 x 27 x 4	black aluminium metal connector for grooved wooden planks	100
2 TVM1	FE010405	32 x 22 x 3	A2 stainless steel connector for asymmetrically grooved wooden planks	250
3 TVM2	FE010400	34 x 23 x 2,5	Az stanness steer connector for asymmetrically grooved wooden planks	250
	TER60A2	60 x 20 x 8	metal connector in stainless steel A2 for wooden patios (short version)	100
	TER180A2	180 x 20 x 8	metal connector in stainless steel A2 for wooden patios (long version)	50
4 TERRALOCK	TER60ALU	60 x 20 x 8	aluminium connector for wooden patios (short version)	100
U TERRALUCK	TER180ALU	180 x 20 x 8	aluminium connector for wooden patios (long version)	50
	TER60ALUN	60 x 20 x 8	black aluminium connector for wooden patios (short version)	100
	TER180ALUN	180 x 20 x 8	black aluminium connector for wooden patios (long version)	50
	VRT60A2	60 x 20 x 8	A2 stainless steel connector for wooden façades	100
S VERTILOCK	VRT60ALU	60 x 20 x 8	aluminium connector for wooden façades	50
	VRT60ALUN	60 x 20 x 8	black aluminium connector for wooden façades	100

Carpenter statics

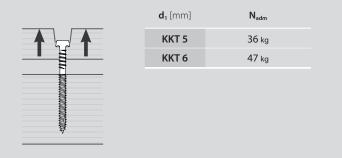
ALLOWABLE VALUES DIN 1052:1988

$\mathsf{SHEAR}\,\mathsf{V}_{\mathsf{adm}}$

WOOD-WOOD

	, Till Till Till Till Till Till Till Til	+
→		

d ₁ [mm]	L [mm]	V_{adm}
KKT 5	≥ 50	43 kg
KKT 6	≥ 80	61 kg

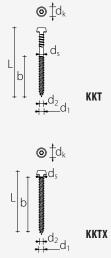

STEEL-WOOD

-	d ₁ [mm]	L [mm]	V_{adm}
	KKTX 5	≥ 40	53 kg

THREAD WITHDRAWAL Nadm

d, [mm] 25 30 40 50 60 70 80 100 120 KKT 5 - - 60 kg 75 kg 88 kg 100 kg 113 kg - - KKT 6 - - - 126 kg - 150 kg 150 kg 180 kg KKT 5 53 kg 65 kg 90 kg - - - - - -		Length L [mm]								
KKT 6 126 kg - 150 kg 150 kg 180 kg	d 1 [mm]	25	30	40	50	60	70	80	100	120
_	KKT 5	-	-	60 kg	75 kg	88 kg	100 kg	113 kg	-	-
KKTX 5 53 kg 65 kg 90 kg	KKT 6	-	-	-	-	126 kg	-	150 kg	150 kg	180 kg
	ККТХ 5	53 kg	65 kg	90 kg	-	-	-	-	-	-

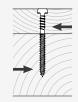
HEAD PENETRATION including UPPER THREAD WITHDRAWAL N_{adm}


NOTE

- Allowable values in accordance with DIN 1052:1988.
- The KKT screws with twin thread are mainly used for wood-wood joints.
- The KKTX total thread screws are mainly used for steel plates (e.g. Terralock patio system).
- The allowable extraction values are calculated considering the threaded part
 as being completely inserted into the wood.
- The allowable penetration values are calculated also considering the underhead thread, in accordance with "Prüfbericht Nr.116108" of Karlsruher Institut für Technologie (KIT).

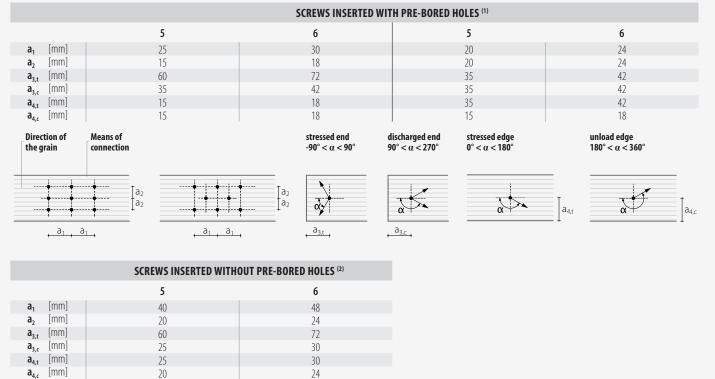
Geometry and minimum distances

GEOMETRY AND MECHANICAL CHARACTERISTICS


KKT/KKTX SCREWS

	Carbo	n steel	Stainless steel		
Ø [mm]	5	6	5	6	
d ₁ [mm]	5,25	6,00	5,25	6,00	
d _K [mm]	6,75	7,75	6,75	7,75	
d ₂ [mm]	3,40	3,90	3,40	3,90	
d _s [mm]	4,05	4,50	4,05	4,50	
d _v [mm]	3,0 - 4,0	4,0 - 5,0	3,0 - 4,0	4,0 - 5,0	
	dou	ıble	sin	gle	
M _{v.k} [Nmm]	5417,2	9493,7	5417,2	9493,7	
f _{ax,k} [N/mm ²]	11,7	11,7	11,7	11,7	
f _{head.k} [N/mm ²]	16,5	16,5	16,5	16,5	
f _{tens.k} [kN]	7,9	11,3	7,9	11,3	
	d1 (mm) dk (mm) d2 (mm) d5 (mm) dy (mm) Myk (Nmm) faxk (N/mm²) fheadk (N/mm²)	Ø [mm] 5 d1 [mm] 5,25 dk [mm] 6,75 d2 [mm] 3,40 d5 [mm] 4,05 dy [mm] 3,0 - 4,0 Myk [Nmm] 5417,2 faxk [N/mm²] 11,7 fheadk [N/mm²] 16,5	d1 [mm] 5,25 6,00 dk [mm] 6,75 7,75 d2 [mm] 3,40 3,90 ds [mm] 4,05 4,50 dy [mm] 3,0 - 4,0 4,0 - 5,0 dw [mm] 5417,2 9493,7 f _{axk} [N/mm²] 11,7 11,7 fheadk [N/mm²] 16,5 16,5		

* For high density materials, pre-bored holes are recommended based on the wood species.


MINIMUM DISTANCES FOR SHEAR LOADS

Angle between strength and grain $\alpha=0^\circ$

Angle between strength and grain $\alpha = 90^{\circ}$

NOTE

- ⁽¹⁾ The minimum distances comply with the EN 1995:2008 standard in accordance with ETA-11/0030.
- ⁽²⁾ The minimum distances are in accordance with ETA-11/0030 considering wood elements with a minimum width of 12 ·d and a minimum thickness of 4 · d. In the case in which these conditions are not respected, please see the KKF screw (pg 227) for the minimum distances.
- In the case of Douglas fir elements (Pseudotsuga menziesii), the minimum distances parallel to the grain $(a_1, a_{3,\nu}, a_{3,c})$ must be multiplied by a coefficient of 1.5.

Designer statics

CHARACTERISTIC VALUES EN 1995:2008

KKT				SH	EAR	TRACTION		
	geor	netry		wood-wood withou pre-bored hole	t wood-wood with pre-bored hole	thread withdra₩al	head penetration including upper thread withdrawal	
	م +d1		A					
d _ı [mm]	L [mm]	b [mm]	A [mm]	R _{v,k} [kN]	R _{v,k} [kN]	R _{ax,k} [kN]	R _{head,k} [kN]	
	40	24	16	1,13	1,46	1,62	0,87	
	45	27	18	1,17	1,54	1,83	0,87	
	50	30	20	1,22	1,63	2,03	0,87	
5	55	33	22	1,28	1,72	2,23	0,87	
5	60	35	25	1,36	1,75	2,37	0,87	
	65	37	28	1,45	1,75	2,50	0,87	
	70	40	30	1,45	1,75	2,71	0,87	
	80	45	35	1,45	1,75	3,05	0,87	
	60	42	18	1,53	2,01	3,41	1,15	
6	80	50	30	1,87	2,50	4,06	1,15	
0	100	50	50	2,03	2,50	4,06	1,15	
	120	60	60	2,03	2,50	4,87	1,15	

KKTX			SH	EAR	TRACTION
	geometry			mediate ood plਬੇte	thread withdra@al
	$L \begin{bmatrix} \mathbf{b} \end{bmatrix} \begin{bmatrix} \mathbf{c} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf$		*		
d _ı [mm]	L [mm]	b [mm]	R [k	v,k (N]	R _{ax,k} [kN]
	20(4)	16	. E	0,87	1,08
5	25(4)	21	Ş _{⊾aTĒ} 3,0 mm	1,08	1,42
5	30(4)	26	з, б	1,30	1,76
	40	36		1,73	2,44

GENERAL PRINCIPLES

- Characteristic values comply with the EN 1995:2008 standard in accordance with ETA-11/0030.
- Design values are obtained from the following characteristic values:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_m}$$

The coefficients γ_m and k_{mod} should be taken according to the current regulations used for the calculation.

- For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
- In the calculations, the density of the wood elements was considered equal to $\rho_{\rm k}\,{=}\,420\,kg/m^3.$
- Values were calculated considering the threaded part as being completely inserted into the wood.
- Sizing and verification of the wooden elements and steel plates must be done separately.
- The KKT screws with twin thread are mainly used for wood-wood joints.
- The KKTX total thread screws are mainly used for steel plates (e.g. Terralock patio system).

NOTE

- ⁽¹⁾ The axial thread-extraction resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.
- ⁽²⁾ The axial resistance to head penetration was assessed for the wood element also considering the underhead thread, in accordance with "Prüfbericht Nr.116108" of Karlsruher Institut für Technologie (KIT) and ETA-11/0030.
- $^{(3)}$ The shear resistance characteristics are calculated considering the case of an intermediate plate (0.5 d₁ \leq S_{PLATE} \leq d₁).
- ⁽⁴⁾ This screw has not been granted the CE marking.

